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Nonperturbative phenomena in four-wave mixing spectra of semiconductors are studied using the exact
solution of a widely used phenomenological nonlinear equation of motion of the exciton polarization. It is
shown that the Coulomb interaction, included in the nonlinearity, leads to two characteristic effects, which are
essentially of dynamical origin—a split of the exciton peak and a nonmonotonous dependence of the response
at the exciton frequency on the magnitude of the external field. Relations between the spectral features and the
parameters of the system are obtained. It is found that the transition from perturbative to nonperturbative
regimes is controlled by parameters inversely proportional to the decay rate. It implies that the condition of low
excitation density does not necessarily warrant applicability of the perturbational approach.
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I. INTRODUCTION

One of the clearest manifestations of the many-body ef-
fects in semiconductors is the phenomenon of the nonlinear
optical response. The Pauli blocking and the Coulomb inter-
action between the quasiparticles lead to the dependence of
the time evolution of the exciton polarization on its spatial
distribution.1–8 When a semiconductor quantum well is ex-
cited by two successive pulses, they produce the signal in
directions which are prohibited in the linear regime while
still conserve momentum in four-wave and multiwave mix-
ing. The dynamical origin9 of the formation of the four-wave
mixing �FWM� signal is naturally incorporated into the de-
scription in terms of the exciton modes characterized by the
frequency �0 and the in-plane wave vector k. From this per-
spective the effects of the Pauli blocking and of the Coulomb
interaction are clearly different. The Pauli blocking reduces
locally the intensity of the field-matter interaction according
to the magnitude of the local polarization. As a result, the
excitation field with particular value of the wave-vector q
becomes coupled to the exciton modes with different k�q.
The Coulomb interaction between the excitons leads to the
direct coupling between the exciton modes. In particular,
when two modes with k1 and k2 are excited, the relevant
coupled modes are characterized by k�n�=k2+n�k, where
−��n�� is an integer number and �k=k1−k2. Although
initially all energy is concentrated in the modes k�0� and k�1�

during the evolution the energy is redistributed among the
coupled modes. In particular it leads to the formation of the
FWM signals, which correspond to n=2 and n=−1.

It follows from this picture that the redistribution of the
energy between the modes characterized by different k
should not be the only manifestation of the mode coupling.
This coupling should also lead to the modification of the
frequencies of the exciton modes. Indeed, without the inter-
action and neglecting the dispersion of the exciton modes
one has a many-fold degeneracy at the exciton resonance
frequency �0. The interaction between the modes should lift
the degeneracy and, if the excitation is sufficiently strong,
make the split of the exciton peak visible in the FWM spec-
trum.

II. NONLINEAR DYNAMICS OF THE EXCITON
POLARIZATION

The effect of the modification of the frequencies of the
exciton modes caused by the coupling is a nonperturbative
effect.10,11 In order to study the problem we present the dy-
namics of the exciton polarization as the exact solution to the
phenomenological nonlinear equation,12

Ṗ�t;r� = − �i�0 + ��P�t;r� − i��P�t;r��2P�t;r�

− i�R�t;r��1 − �P�t;r��2/Psat
2 � , �1�

where �0 is the detuning, i.e., the difference between the
frequency of the external field and the exciton frequency in
the stationary frame, � is the phenomenological decay rate,
Psat

2 is the exciton saturation density, and �=��− i��, with
��, ���0, is a phenomenological parameter quantifying the
interaction between the excitons. The positive real and nega-
tive imaginary parts of this parameter constitute the excita-
tion induced shift10 �EIS� and the excitation induced
decay13–15 �EID�, respectively. The interaction with the ex-
ternal field is quantified by the Rabi frequency �R�t ;r�
=dE�t ;r�, where E�t ;r� is the envelope of the external field
and d is the respective dipole moment. Writing Eq. �1� we
have taken into account that the external field is coupled only
to the exciton s states and have normalized the exciton po-
larization by the value of the exciton wave function at the
origin, 	��0�=2�2 /
aB

2 , with aB being the exciton Bohr ra-
dius.

Phenomenologically Eq. �1� has provided valuable inter-
pretations for nonlinear measurements.12,16,17 The nonlinear
term �� may be viewed as the short-time limit of the
memory function,3 which is exact to the third order in the
exciting electric field.18 The nonpertubative solutions have
been considered in Refs. 19 and 20 and many papers refer-
enced in Ref. 11. Equation �1� takes into account only the
exciton states and assumes that the effect of biexcitons is
rather small. The possibility to neglect the biexciton contri-
bution is supported by the observation that the true bound
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two-exciton states, whose effect would be most significant,
do not form under the excitation with definite helicity. Also,
as we will see later the main frequency region of interest is
limited from below by the frequency of the exciton reso-
nance, which makes it spectrally resolved from the frequen-
cies where the biexciton effect would be the most significant.

We consider the excitation of the semiconductor by two
short circularly polarized pulses with the same helicity �see
Fig. 1� acting on the system during the intervals t−�� t� t+�
and t−�� t� t+�. Between the pulses, t+�� t� t−� and after the
second pulse t� t+� the dynamics of the exciton polarization
is free and satisfies Eq. �1� with E=0. We study the free
dynamics polarization P0�t� before calculating the polariza-
tion P1,2�t� of the driven dynamics. Then we are going to
solve for the polarization in the following order: P1�t� be-
tween t−�� t� t+�, P10�t� between t+�� t� t−�, P2�t� between
t−�� t� t+�, and at the end the final solution P20�t� for t� t+�.

The free dynamics ��R�t�=0� can be solved exactly by
noting that Eq. �1� in this regime is reduced to the simple
form

Ṗ0�t;r� = − �i�0 + � + i��t;r��P0�t;r� , �2�

where ��t ;r�=��P0�t ;r��2, and by observing that Eq. �1�
yields an equation for the magnitude of the polarization,

d

dt
�P0�t;r��2 = − 2�� + ���P0�t;r��2��P0�t;r��2 �3�

with the solution

�P0�t;r�� = �P0�0;r��e−�tA�t; �P0�0,r��� , �4�

where

A2�t; �P0�0,r��� = �1 +
���P0�0;r��2

�
�1 − e−2�t��−1

. �5�

The free propagator may be expressed in terms of the ampli-
tude modulation A�t ;r� and the phase modulation �t ;r�,

P0�t;r�/P0�0;r� ¬ ��t; �P0�0,r���

= A�t; �P0�0,r���e−i�0t−�t+i�t;r�, �6�

where

�t;r� =
��

��
ln A�t; �P0�0,r��� . �7�

The amplitude term shows the nonpertubative effect of EID.
It is interesting to note that EID does not lead to a mere
modification of the decay rate, �. Instead the amplitude
modulation A�t ;r� decreases to a fraction of the initial am-
plitude at twice the linear rate, i.e., 2�. The phase modulation
shows an oscillation dependent on the nonlinear quality fac-
tor �� /��. This is related to the Goldstone mode in the ex-
citons studied in Ref. 21.

The initial conditions for Eq. �2� are determined by the
polarization distribution right after the external field is
switched off. We find the immediate response of the system
assuming that the duration of the excitation pulses is much
shorter than the typical dynamical time scales determined by
detuning and the decay rate.

We turn now to the driven ��R�t��0� time evolution of
the polarization; i.e., we consider the time interval t−� t
� t+ where the particular excitation pulse does not vanish
and factor out the term exp�ik ·r� so that we can consider the
excitation pulse to be spatially homogeneous. Neglecting the
contribution to the phase 	
t−

t+�i�0+�+ i��t ;r��P1,2�t ;r�dt
we solve the dynamical equation and find the relation be-
tween the polarization at the instances t− and t+,

P1,2�t+� = P1,2� �t−�

− i�Psat
2 − P1,2�2 �t−� tanh��Psat

2 − P1,2�2 �t−�
�

Psat
2

− arctanh� P1,2� �t−�
�Psat

2 − P1,2�2 �t−�
�� , �8�

where P1,2� �t−�=Re�P1,2�t−�� and P1,2� �t−�=Im�P1,2�t−��, and
we have introduced the area of the exciting pulse �
=
dt�R�t�.

Using the solutions for the free and driven polarization in
Eqs. �2� and �8�, we solve the time evolution of the polariza-
tion in all the four regions t−�� t� t+�, t+�� t� t−�, t−�� t� t+�,
and t� t+�. Assuming that the system initially is in the ground
state P�t−��0 we find the exciton polarization created by the
first pulse,

P1�t+� ;r� = − ieik1·rP1�t+�� , �9�

where

P1�t+�� = Psat tanh� �

Psat
� . �10�

It follows from this equation that the saturation effect for the
first pulse reduces to a simple �although nonlinear� renormal-
ization of the pulse area. Using Eq. �9� in Eq. �4� we can see
that the effective frequency ��t ;r� determining the dynamics
of the polarization is constant across the sample. As a result
there is no coupling between the exciton modes character-
ized by different k.

Denoting the delay time, the time separation between the
pulses, by �= t−�− t+�, we obtain the polarization right before
the arrival of the second pulse,

FIG. 1. The semiconductor is excited by two short pulses sepa-
rated by the delay time �= t−�− t+�.
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P10�t−� ;r� = P1�t+� ;r��10��� , �11�

where �10���=��� ; �P1�t+����. The spatial distribution of the
polarization P10�t−� ;r� plays the role of the initial condition
for the immediate response with respect to the second pulse
according to Eq. �8�. For the analysis of the time evolution of
the polarization during the second pulse it is convenient to
factor exp�ik2 ·r� out of P2�t ;r� introducing

P̃2�t;�k · r� = e−ik2·rP2�t;r� �12�

with �k=k1−k2. The reduced distribution P̃2�t ;�k ·r� satis-
fies Eq. �1� with the modified spatial profile of the external

field �̃R�t�=e−ik2·r�R�t ;r�. The form of the initial conditions
in Eq. �8� changes according to

P̃10�t−� ;�k · r� = − i�10���P1�t+��ei�k·r. �13�

It follows from Eqs. �8� and �13� that for the second pulse the
role of the saturation effect is twofold. It modifies the pulse
area and excites all modes k�n� rather than just a single mode
as we had for the first pulse. We present the polarization as a
superposition of the multiwave mixing modes,

P̃2�t;�� = �
n

P2
�n��t�ein�, �14�

where �=�k ·r and P2
�n��t� are the amplitudes of the multi-

wave mixing polarizations. Substituting this representation
into Eq. �2� we can see that in terms of the multiwave mixing
modes the free dynamics of the polarization can be presented
as the dynamics of a system with an infinite number of de-
grees of freedom coupled to each other due to the nonlinear-
ity,

d

dt
P2

�n��t� = − �i�0 + ��P2
�n��t� − i�

m

�n−m�t�P2
�m��t� ,

�15�

where �n�t�=��2
�−1
−


 �P̃2�t ;���2e−i�nd�. The initial con-

ditions for Eq. �15� are constituted by the immediate re-
sponse to the second pulse, thanks to the saturation effect.
This picture clearly illustrates the difference between the ef-
fect of the Pauli blocking and the Coulomb interaction on
formation of the multiwave mixing response.

Using the solution of the equation of motion for free po-
larization dynamics we find

P2
�n��t� =

1

2

�

−





P̃2�t+� ;����t; �P̃2�t+� ;����e−i�nd� . �16�

This equation and Eqs. �8� and �13� give the exact evolution
of the exciton polarization in the limit of short excitation
pulses in the two-pulse scheme. Formally, one can obtain
from Eq. �16� the spectrum P2

�n���� using the Fourier trans-

form of ��� ; �P̃2�t+� ;���� with respect to time,

���; �P̃2�t+� ;���� =
i

��w + i/2� 2F1�1;
1

2
+ iX;

3

2
− iw;

−
���P̃2�t+� ;���2

�
� , �17�

where w= ��−�0� /2�, X=�� /2��, and 2F1 is the hypergeo-
metric function. Technically, however, because the second
argument of this function is a complex number it may be
more efficient to calculate the spectrum using the time series
P2

�n��t�.
The spectrum corresponding to the four-wave mixing di-

rections 2k2−k1 and 2k1−k2 is obtained from Eq. �16� tak-
ing n=−1 and n=2, respectively, and for n=2 is shown in
Fig. 2 as a function of the pulse area. In order to estimate the
relation between the decay rate and the nonlinear parameter
we have used the expressions following from the micro-
scopic consideration7 ���12�B /
 and Psat

2 =7 /32, where
��B is the exciton Rydberg.

The spectrum has two typical features. The first one con-
sists of branches detached from the exciton frequency with
increasing pulse area. These branches for sufficiently high
amplitudes of the excitation field may manifest themselves
on the spectrum in the form of multiple resonances. The
second interesting feature is the oscillatory character of the
field dependence of �P2

�2���0 ;���2, which is the FWM re-
sponse at the exciton frequency.

A. FWM spectrum in the limit of negligible EID

We start the discussion of these features from the simplest
case ��=0 �vanishing EID� and high Psat �low saturation
regime�. The first assumption simplifies the effect of the ini-
tial conditions on the polarization dynamics, while the sec-
ond simplifies the relation between the excitation field and
the polarization of the immediate response, so that

P̃2�t+� ;�� = − i���1�10����e−i�+i	1 + ��2�ei	2� , �18�

where 	1=arg��1�10���� and 	2=arg��2�.
It is interesting to note that according to Eqs. �4� and �15�

in this approximation since only ��1�t� differ from zero the

FIG. 2. �a� Four-wave mixing spectrum corresponding to 2k1

−k2 as a function of the normalized pulse area. The parameters of
the system are chosen to be �� /�=5�102, �� /2��=5. The hori-
zontal and the vertical lines show the positions of the sections of the
surface P�1��� ;�� presented in �b� and �c�. �b� The FWM spectrum
at the fixed value � / Psat=0.19. �c� The dependence of the FWM
response at the exciton frequency P�1���0 ;�� as a function of the
pulse area.
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dynamics of the polarization is described by the equation of
motion for a one-dimensional �1D� tight-binding model with
the time-dependent coupling between neighboring sites
����2�1�10����e−2�t. The relation between the amplitudes of
the excitation at different sites gives the relation between the
amplitudes of the signals corresponding to multiwave mix-
ing. Initially the excitation is localized on sites n=0,1 and
with time it propagates along the chain giving

P2
�n��t� = − ein�	2−	1−
/2�+i	2 exp�− i�0t − �t −

i�I

2�
�1 − e−2�t��

����1�10����Jn−1���1 − e−2�t��

− i��2�Jn���1 − e−2�t��� , �19�

where Jn are the Bessel functions of the first kind, I
= ��1�10����2+ ��2�2, and �=���2�1�10���� /�. Deriving Eq. �19�
we have used the Jacobi-Anger expansion,22 exp�iz cos ��
=�n=−�

� inJn�z�ein�.
The spectrum of the four-wave mixing signal correspond-

ing to n=2 is shown in Fig. 3. Shortly after the excitation,
for t�1 /2�, the amplitude of the multiwave mixing signal
drops exponentially with the order of mixing, 	���t /2�n.
The exponential drop holds asymptotically in time if ��1.
This result agrees with the perturbational approach. The situ-
ation, however, drastically changes if the parameters of the
system are such that ��1. In this case, the intensity of the
multiwave mixing signal becomes independent of its order
starting time t�−ln�1−�−1� /2��1 /2���2�1�10����. This
consideration suggests naturally to identify �=1 as a critical
value that separates perturbative and nonperturbative re-
gimes.

The detailed form of the spectrum is essentially deter-
mined by the fact that the effective coupling between the
modes vanishes with time. Right after arrival of the second
pulse the polarization oscillates with the frequency detuned
from the exciton frequency by the value 	�I+��, where the
second term estimates the contribution of the Bessel func-
tions. This detuned frequency qualitatively describes the de-
pendence of the frequencies of the detached resonances on
the pulse area �see the bold solid line in Fig. 3�. In particular
it shows that the resonances in the spectrum widen with in-
creasing nonlinear parameter �. In the opposite limit, t

�1 /�, the coupling between the modes vanishes and, as a
result, the exciton polarization oscillates with the nonmodi-
fied exciton frequency �0. These oscillations give rise to the
resonant behavior at the exciton frequency, for which depen-
dence on the pulse area is determined by the asymptotic
value of the Bessel functions J���. Therefore, the response at
the exciton frequency essentially depends on whether the
system is in perturbative or nonperturbative regime. We il-
lustrate the difference between these regimes considering the
effect of the positive and negative delay times, where the
positive delay signal is understood as the signal in the direc-
tion determined by the second excitation pulse, i.e., k�n�

=k2+n�k with n�0. The expression for the negative delay
time can be obtained from Eq. �19� by considering the signal
in the “conjugate” direction n̄=1−n and exchanging �1↔�2.

In the perturbative regime, ��1, we obtain

�P2
�n���0;� � 0��2 	 4�0

2n−2��1n�10
n−1����2,

�P2
�n���0;� � 0��2 	 4�0

2n−2��1n�10
n �− ���2, �20�

where �0=���1�2� /�. In this regime ��10�����exp�−���,
thus, the positive delay signal decays with time constant 2n�
while for the negative delay it decays more slowly with the
constant 2�n−1��. For the case of FWM signal this result
agrees with the perturbational calculations.9

In the nonperturbative regime the positive and negative
delay signals are determined by the oscillating asymptotics
of the Bessel functions,23

�P2
�n���0;� � 0��2 	

1


�
���1�10����2 + ��2�2

+ �− 1�n���1�10����2 − ��2�2�sin�2��� ,

�P2
�n���0;� � 0��2 	

1


�
���1�2 + ��2�10����2

+ �− 1�n���1�2 − ��2�10����2�sin�2��� .

�21�

Writing this expression we have neglected the oscillating
term �cos�2�� vanishing as ���1�10����2+ ��2�2� /�2 with in-
creasing pulse area. Thus, for both positive and negative de-
lays the response at the exciton frequency saturates at the
oscillations with the period �T=2
. The strong asymmetry
between these cases specific for the perturbative regime does
not hold any longer and the only difference is the phase of
the oscillations. It should be noted that in Ref. 24 the satu-
ration of the FWM response found in the numerical calcula-
tions was attributed to the renormalization of the pulse area
by the EID and EIS. In order to provide the qualitative com-
parison we calculate the pulse area corresponding to the tran-
sition to the nonperturbative regime. Setting �cr	1 �com-
pare with Fig. 4�d��, assuming no delay between the
incoming exciting pulses, �=0, we obtain

FIG. 3. The form of the four-wave mixing spectrum in low
saturation regime in the case of negligible EID ���=0� and �� /�
=2.5�102. The solid line shows the position of the resonant fre-
quency determined by �=�0+�I+��.
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�cr =��cr�

�
	� 
�

12�B
� 0.2, �22�

where for the estimate we choose � /�B�0.1. Found value
of �cr is of the same order of magnitude as that found in Ref.
24 indicating that the saturation effect observed in Ref. 24 is
related to the transition to the nonperturbative regime. The
present consideration, however, suggests that the origin of
the nontrivial dependence of the response on the pulse area is
the redistribution of the excitation over multiwave mixing
modes. Considering the identity �nJn

2�z�=1 for the limits z
�1 and z�1 it can be seen that such redistribution is espe-
cially effective in the nonperturbative regime resulting in es-
sential suppression of the FWM response.

The crossover from perturbative to nonperturbative re-
gimes, as it is seen in the dependence of the FWM polariza-
tion on the delay time, is shown in Fig. 4. Similarly to the
results obtained in Ref. 9, when the pulse area of the external
excitation increases the dependence of the FWM polarization
at the exciton frequency on the delay time is no longer ex-
ponential. First the shoulder for the positive delay starts to
form and then the dependence becomes nonmonotonous. As
follows from Eq. �19� for the positive delay time one has

�

��
�P�−1���0;� = 0��2 � − 2J1��������2�2 − ��1�2�J0���

+ 2��1�2J1���� . �23�

Thus, when �1=�2 the transition from decay to rise at �=0
does not occur. The dependence, however, becomes flat in
this case as � reaches a zero of the Bessel function. The
smallest such value is ��3.83.

As has been discussed above �and is evident from Eqs.
�20� and �21��, the transition to the nonperturbative regime
results in significantly changed relation between the multi-
wave mixing polarizations of different orders, which is illus-
trated by Fig. 4�d�. For ��1 the relation does not follow the
exponential law prescribed by the perturbation theory. Be-
cause of the nonmonotonous dependence at specific values

of � the magnitude of the six-wave mixing polarization may
exceed that of the FWM polarization, which, in turn, may be
higher than the polarization in the direction of the linear
response.

It should be emphasized that the mechanism of the oscil-
latory dependence of the response at the exciton frequency is
different from the Rabi oscillations,25,26 which would corre-
spond to the nonmonotonous dependence of the immediate
response on the excitation field. In the case under consider-
ation the oscillations are the result of the free dynamics of
the exciton polarization when the external field is turned off.
The physics of the Rabi oscillations and of the oscillations of
�P2

�n��� ;���2, of course, are essentially the same. As noted
above the dynamics of the polarization in the case under
consideration appears analogous to a 1D tight-binding model
with vanishing coupling between the neighboring sites. In
quantum-mechanical terms it can be described as a multiple
level system, where the levels correspond to the exciton
modes, with time-dependent field Vij�t�, which couples dif-
ferent levels. Depending on the “area” of the off-diagonal
elements, 
dtVij�t�, one has the oscillations of the final popu-
lations of the different levels. Translated to the language of
the multimixing signals P2

�n� this result implies the oscilla-
tions of �P2

�n���0��2 since asymptotically, as has been noted,
one has the dynamics determined by the nonperturbed exci-
ton frequency.

B. Effect of the excitation induced decay

In order to study the effect of the EID on the spectrum
�compare Figs. 2 and 3� we use Eq. �17� assuming that
��1�10����= ��2�=�. Considering the asymptotic values of the
hypergeometric function27 in the limit ��=2���2 /��1 we
can approximately present the spectrum in the form

P2
�n���� �

�

���
�C��;X�A2e−iX ln �� +

1

��

A1

iX − 1/2� ,

�24�

where

C��;X� =
��1/2 − iw���1/2 − iX�

��1 − iw − iX�
�25�

and A1=An�1�, A2=An�1 /2� with An�p� depending on X only
�i.e., on the relation between EIS and EID�,

An�p� =
1

2

�

−





d��1 + e−i��e−in�

�exp�− �iX + p�ln�2 cos2��

2
��� . �26�

Similarly to the case of negligible EID, the response os-
cillates and reaches the saturation in the high excitation limit
���1. At the exciton frequency the magnitude of the signal
is

FIG. 4. �Color online� Transition from the perturbative to non-
perturbative regimes. Left panel. The dependence of the FWM po-
larization at the exciton frequency on the delay time for different
values of the parameter �: �a� �=0.32, �b� �=2.88, and �c� �
=3.84. In order to facilitate comparison with the results obtained in
Ref. 9 the graphs are calculated for �2 /�1=�3. The low, comparing
to Ref. 9, value of � in �c� is due to neglected Pauli blocking in Eq.
�19�. Right panel �d�. Multiwave mixing polarizations, linear-
response direction n=−1 �solid line�, FWM n=−2 �dashed line�,
and six-wave mixing direction n=−3 �dotted line� as functions of �.
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�P2
�n���0��2 	


�2

X��
�A2�2 tanh�
X� . �27�

This saturation also is of the dynamical origin since we work
in the regime of weak saturation due to the Pauli blocking
�� / Psat�1�. The significant difference with the previously
considered situation is that now the minima of the spectrum
as a function of the pulse area are not equally spaced as the
oscillating part has the form �cos�X ln ���. Thus, with the
decreasing ratio between the real and imaginary parts of the
nonlinear parameter the crossover from linear to logarithmic
scale occurs.

Finally, we discuss the effect of the saturation due to the
Pauli blocking described by parameter Psat. Qualitatively,
this effect can be understood as follows. The nonmonotonous
behavior of the semiconductor response on the pulse area
studied above is supported by unrestricted increase in the
polarization of the immediate response �see Eq. �18��. How-
ever, the saturation effect renormalizes the pulse area so that
the magnitude of the polarization cannot exceed Psat. For
example, from the perspective of the discussion of the effect
of EID this means that Eq. �24� remains valid only if two
restrictions are met, 2���2 /��1 and �� Psat. This imposes
the restriction of the decay rate to be sufficiently small, �
���Psat

2 . In the similar way the saturation affects the transi-
tion to the nonperturbative regime obtained analyzing the
semiconductor response in the limit of vanishing EID. With
this regard it should be noted that the critical value of the
pulse area estimated in Eq. �22� is close to Psat=�7 /32
�0.47 while remains smaller for low-temperature ratios of
the decay rate � and the exciton binding energy.

III. CONCLUSION

We have studied nonperturbative effects in four-wave
mixing spectra of semiconductors. These effects are analyzed

using the exact solution of the nonlinear equation of motion
of the exciton polarization taking into account EIS, EID, and
the saturation effect phenomenologically. We found that the
interaction between the excitons accounted by EIS leads to
two specific spectral features—a split of the exciton peak and
a nonmonotonous dependence of the response at the exciton
frequency �0 on the magnitude of the external field. The
important characteristic of the splitting is that new spectral
features should appear at frequencies higher than �0. This
allows one to make a distinction between the effect of inter-
action of the exciton modes and the manifestation of bound
biexciton states, which should modify the spectrum at fre-
quencies lower than �0.

We would like to emphasize that these effects do not ap-
pear in any order of the perturbational ���n�� approach. It can
be shown that the appearance of additional spectral features
can be traced as a divergence of the perturbational series. It
should be stressed that the crossover from the perturbative to
nonperturbative regimes is governed by parameters that es-
sentially depend on the decay rate �e.g., ���1�10����2� /�	1
in the case ��=0�. This means that the condition of low
excitation itself does not necessarily warrant the validity of
the perturbation theory. As an ultimate example one can con-
sider the model with �=0 when the spectrum �for �=0� has
the form P����1 /���−�0−�I�2−�2I2 with the exciton
peak being split for arbitrary low excitations.
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